

Imagestore. Gallery solution for django projects

Contents:

	Installation

	Available settings

	Extending Imagestore
	Warning

	Migrating from old versions (before 2.9.0)

	Example project

	Django CMS Integration

	Watermarking

Indices and tables

	Index

	Module Index

	Search Page

Installation

	Install with pip or easy install (All dependencies will be installed automatically, however if you use Python 3 you may need to install specific versions of sorl-thunbmail and django-autocomplete-light):

pip install imagestore

	If you use django before version 1.7 we recomment to install south for smooth migrations:

pip install south

	Symlink or copy imagestore/static/imagestore.css to your MEDIA_ROOT, or write youre own style (staticfiles supported as well).

	Add imagestore, django-tagging and sorl.thumbnail to your INSTALLED_APPS.
your INSTALLED_APPS should look like:

INSTALLED_APPS = (

 'imagestore',
 'sorl.thumbnail',
 'tagging',
)

	Add imagestore.urls to your urls with namespace=’imagestore’:

urlpatterns = patterns('',

 (r'^gallery/', include('imagestore.urls', namespace='imagestore')),

)

	Set IMAGESTORE_SHOW_USER to False, if you don’t want to show information from user profile or have no user profile.

	Run:

./manage.py migrate

	Add jquery and jqueryui load to your template to use tagging autocomplete and/or prettyphoto

	If you want to use prettyPhoto put prettyPhoto [http://www.no-margin-for-errors.com/projects/prettyphoto-jquery-lightbox-clone/] to your media directory and include imagesotore/prettyphoto.html to your template

Available settings

	IMAGESTORE_UPLOAD_TO (“imagestore/”)

	Path for uploading images

	IMAGESTORE_IMAGES_ON_PAGE (20)

	Number of images in one page (album/user/tag view)

	IMAGESTORE_ON_PAGE (20)

	Number of albums on page (index view)

	IMAGESTORE_SELF_MANAGE (True)

	If true, imagestore install handler on launch, that grant add/change/delete
permissions for Album and Image models for every created user (with this permissions
users can create personal galleries, if you don’t want it set this settings to False).

	IMAGESTORE_TEMPLATE (“base.html”)

	Here you can set template that imagestore templates will inhert.
Imagestore templates expect next blocks in basic template:

	head (inside <head> tag for scripts and styles inserting)

	title (inside <tilte> tag)

	breadcrumb

	content (main content)

	content-related (this block used for tag-cloud, user info and create/edit links)

	IMAGESTORE_SHOW_USER (True)

	Show user info (such as avatar, link to profile and other stuff)
Default template expects that profile has avatar ImageField and get_absolute_url method
You can customize view it by overriding imagestore/user_info.html template

Notice, that since imagestore version 2.7.4, which supports custom user model,
in imagestore/user_info.html passes user variable with current logged in user.

	IMAGE_MODEL (“imagestore.models.Image”)

	Class for storing images. See extending imagestore for details.

	ALBUM_MODEL (“imagestore.models.Album”)

	Class for storing albums. See extending imagestore for details.

	IMAGESTORE_IMAGE_FORM (“imagestore.forms.ImageForm”)

	Form for uploading images. See extending imagestore for details.

	IMAGESTORE_ALBUM_FORM (“imagestore.forms.AlbumForm”)

	Form for creating albums. See extending imagestore for details.

	IMAGESTORE_LOAD_CSS (“True”)

	Load CSS file ‘static/imagestore.css’ in imagestore templates. If you want to use custom theme - disable this settings.

	IMAGESTORE_UPLOAD_ALBUM_PROCESSOR (“imagestore.models.upload.process_zipfile”)

	Function for processing uploaded zip archives from admin interface. Function gets AlbumUpload model instance
and should process file from zip_file field to upload images. For example, you can override this setting
to provide function, which do nothing, and process file lately

	IMAGESTORE_BRIEF_TO_ALT_TEMPLATE (“{0}_{1}”)

	There is template tag imagestore_alt which automaticly generates images
alt attribute based on image title or, if title is empty, on album brief
field and (optional) loop counter. Setting determines alt attribute format
when brief ({0}) and counter ({1}) are used.

Extending Imagestore

You can extend imagestore by customizing Image and Album classes
as well as forms for their creation. Basic abstract classes that
require to extend exists in models.bases.image and models.bases.album.

After you create your classes, tell imagestore to use them by setting next settings:

	IMAGESTORE_IMAGE_MODEL

	IMAGESTORE_ALBUM_MODEL

	IMAGESTORE_IMAGE_FORM

	IMAGESTORE_ALBUM_FORM

You should set model-related settings to app_label.model_name string. For example:

IMAGESTORE_IMAGE_MODEL = 'mystoreapp.MyImage'
IMAGESTORE_ALBUM_MODEL = 'mystoreapp.MyAlbum'

You should set form-related settings as string with python path to required class. For example:

IMAGESTORE_IMAGE_FORM = 'mystoreapp.forms.MyImageForm'
IMAGESTORE_ALBUM_FORM = 'mystoreapp.forms.MyAlbumForm'

Internally imagestore uses django-swappable-models [https://github.com/wq/django-swappable-models] reusable app.
So you can read ther docs to know how to use it correctly.

Warning

	It is required to add app_label to your Image and Album models.

	Migrations with swappable models tested only with django migrations. Use it with south with caution.

Migrating from old versions (before 2.9.0)

	Before imagestore v.2.9.0 you have to set model-related settings to full python path to model class.
Now it should be in app_label.model_class form.

	As now imagestore uses django-swappable-models app for swapping Album and Image models you should
use swapper’s methods for importing or referencing to imagestore models.
For more info look at django-swappable-models docs [https://github.com/wq/django-swappable-models/blob/master/README.md]

Example project

Package contains preconfigured django project with installed imagestore.
You can find it in test directory inside project root,
or get from repository [https://github.com/hovel/imagestore]

Django CMS Integration

Imagestore can show an album as a plugin in django-cms, and can be used as a django-cms app.

To use plugins, just add imagestore.imagestore_cms to your INSTALLED_APPS

If you want to use imagestore as a django-cms application

	Set IMAGESTORE_SHOW_USER to False

	Because django-cms build connect apps without namespace settings
you need to tell django where to search imagestore namespace,
you can do it by adding django-cms urls with the ‘imagestore’ namespace:

url(r'^', include('cms.urls')),
url(r'^', include('cms.urls', namespace='imagestore'))

Watermarking

Use watermarker [http://pypi.python.org/pypi/watermarker/] sorl integration to add watermark to your images

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		Imagestore. Gallery solution for django projects

 		Installation

 		Available settings

 		Extending Imagestore

 		Warning

 		Migrating from old versions (before 2.9.0)

 		Example project

 		Django CMS Integration

 		Watermarking

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

